Oligodynamic effect

From Wikipedia, the free encyclopedia
Jump to: navigation, search

The oligodynamic effect (Greek: oligos = few, Greek: dynamis = force) was discovered in 1893 by the Swiss Karl Wilhelm von Nägeli as a toxic effect of metal ions on living cells, algae, molds, spores, fungi, viruses, prokaryotic and eukaryotic microorganisms, even in relatively low concentrations.[1] This antimicrobial effect is shown by ions of mercury, silver, copper, iron, lead, zinc, bismuth, gold, aluminium, and other metals.

Contents

[edit] Mechanism

Metal ions, especially those of heavy metals, show this effect. The exact mechanism of action is still unknown. Data from silver suggest that these ions denature enzymes of the target cell or organism by binding to reactive groups, resulting in their precipitation and inactivation.[2] Silver inactivates enzymes by reacting with the thiol groups to form silver sulfides. Silver also reacts with the amino-, carboxyl-, phosphate-, and imidazole-groups and diminish the activities of lactate dehydrogenase and glutathione peroxidase. Bacteria are in general affected by the oligodynamic effect. Viruses in general are not very sensitive to this effect.

[edit] Applications

Silver spoons self-sanitize due to the oligodynamic effect.

Certain metals, such as silver, copper and copper alloys, are known to be far more poisonous to bacteria than others, such as stainless steel and aluminium, which is why they are used in mineral sanitizers for swimming pools and spas.

Many infections can be spread by doorknobs. Brass doorknobs disinfect themselves in about eight hours, while stainless steel and aluminium knobs never do. Unvarnished brass doorknobs therefore tend to be more sanitary than stainless or aluminium doorknobs. The effect is important in hospitals, and useful in any building.[3]

Silver is capable of rendering stored drinking water potable for several months. For this reason, water tanks on ships and airplanes are often "silvered".[4] Metallic silver, including colloidal silver, and silver compounds (silver sulfadiazine) are used externally in wound and burn treatments.[5] Silver nanoparticles, obtained by irradiating a silver nitrate solution with an electron beam, are effective bactericides, destroying gram-negative species immune to conventional antibacterial agents. [6] Silver-coated medical implants and devices have been shown to be more resistant to biofilm formation.[7] Silver nitrate has been shown to be effective in inhibiting the development of the herpes simplex type 1 virus though it is largely ineffective against type 2.[8]

[edit] References

  1. ^ v. Nägeli K.W. 1893. Über oligodynamische Erscheinungen in lebenden Zellen. Neue Denkschr. Allgemein. Schweiz. Gesellsch. Ges. Naturweiss. Bd XXXIII Abt 1.
  2. ^ "Oligodynamic Action of Silver, Copper and Brass on Enteric Bacteria Isolated from Water of Kathmandu Valley". Nepal Journal of Science and Technology (10): 189–193. 2009. 
  3. ^ Doorknobs: A Source of Nosocomial Infection?
  4. ^ Antibacterial effects of Silver, Salt Lake Metals
  5. ^ Topical Antimicrobials in Burn Wound Care: A Recent History, Wounds 01 July 2008
  6. ^ http://www.sciencedaily.com/releases/2010/05/100524101339.htm
  7. ^ Stobie, N., B. Duffy, D. Mccormack, J. Colreavy, M. Hidalgo, P. Mchale, and S. Hinder. "Prevention of Staphylococcus Epidermidis Biofilm Formation Using a Low-temperature Processed Silver-doped Phenyltriethoxysilane Sol–gel Coating." Biomaterials 29.8 (2008): 963-69. Print.
  8. ^ Landsdown, Alan B.G. (2010). Silver in Healthcare: Its Antimicrobial Efficacy and Safety in Use. Cambridge, UK: Royal Society of Chemistry. p. 84. ISBN 978-1-84973-006-8. http://books.google.com/books?id=QxtLm7MgQhYC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false. Retrieved 25 July 2011. 

[edit] External links

Personal tools
Namespaces

Variants
Actions
Navigation
Interaction
Toolbox
Print/export
Languages