Microelectronic Engineering Bachelor of science degree

6da3b4bc-fc53-4ae6-b5d6-bc342ec55c81 | 128995

Overview

Dual Degree

Integrated microelectronic or nanoelectronic circuits and sensors drive the global economy, increase productivity, and help improve our quality of life.


Semiconductor and photonic devices impact virtually every aspect of human life, from communication, entertainment, and transportation, to health, solid-state lighting, and solar cells. There is an ever increasing need for talented engineers that not only understand the design of these amazing devices but can direct and optimize their fabrication. Microelectronic engineering is at the leading edge of science education. Integrated microelectronic or nanoelectronic circuits and sensors drive our global economy, increase our productivity, and help improve our quality of life. RIT’s microelectronic engineering program is the only accredited bachelor of science degree of its kind in the U.S. and is considered a world leader in the education of semiconductor process engineers.

Semiconductor technology at the micro and nanometer scale remains a key driver for the world economy. Worldwide electronics sales topped one trillion dollars in 2017 and the semiconductor industry is a leader in this crucial manufacturing field. The education of a capable high-tech workforce is important for the nation's economic growth and long-term security.

Students in the microelectronic engineering program are required to complete two semesters and two summers of cooperative education, beginning after their second year of study. Students find co-op employment at many of the major integrated circuits manufacturers across the United States. Upon graduation, students are well prepared to enter industry or pursue graduate school. This major also prepares students to work in emerging technologies such as nanotechnology, microelectromechanical systems, photonics, photovoltaics, and microsystems.

With the worldwide semiconductor industry growing at an astounding pace, RIT graduates are a valuable resource to the industry. This major offers students an unparalleled opportunity to prepare for professional challenges and success in one of the leading modern areas of engineering. Faculty committed to quality engineering educations, state-of-the-art laboratories, strong industrial support, co-op opportunities with national companies, and smaller class sizes make this one of the most value-added programs in the nation.

Educational objectives

The educational objectives of the microelectronic engineering major are to produce graduates who have the following skills or characteristics:

  • Sound knowledge of the fundamental scientific principles involved in the operation, design, and fabrication of integrated circuits.
  • A comprehensive understanding of relevant technologies such as integrated circuit process integration and manufacturing. This includes nanolithography and the application of engineering principles to the design and development of current and future semiconductor technologies.
  • A professional approach to problem-solving, using analytical, academic, and communication skills effectively, with special emphasis on working in teams.
  • An enthusiasm for learning and the continuous improvement of skills throughout one’s career, exemplified by learning about emerging technologies and adapting to and accepting change within the field.
  • A desire to achieve leadership positions in industry or academia.
  • A breadth of knowledge, including the multidisciplinary nature of microelectronic engineering as well as the broad social, ethical, safety, and environmental issues within which engineering is practiced.

One of the great challenges in integrated circuit manufacturing is the need to draw on scientific principles and engineering developments from such an extraordinarily wide range of disciplines. The design of microelectronic circuits requires a sound knowledge of electronics and circuit analysis. Optical lithography tools, which print microscopic patterns on wafers, represent one of the most advanced applications of the principles of Fourier optics. Plasma etching involves some of the most complex chemistry used in manufacturing today. Ion implantation draws upon understanding from research in high-energy physics. Thin films on semiconductor surfaces exhibit complex mechanical and electrical behavior that stretches our understanding of basic materials properties.

Scientists and engineers who work in the semiconductor field need a broad understanding of and the ability to seek out, integrate, and use ideas from many disciplines. The major provides the broad interdisciplinary background in electrical and computer engineering, solid-state electronics, physics, chemistry, materials science, optics, and applied math and statistics necessary for success in the semiconductor industry.

Plan of study

Students gain hands-on experience in the design, fabrication, and testing of the integrated circuits (microchips), the vital component in almost every advanced electronic product manufactured today. RIT's undergraduate microelectronics engineering laboratories, which include modern integrated circuit fabrication (clean room) and test facilities, are among the best in the nation. At present, the major is supported by a 150mm complementary metal oxide semiconductor line equipped with diffusion; ion implantation, plasma, and chemical vapor deposition (CVD) processes; chemical mechanical planarization; and device design, modeling, and test laboratories. The microlithography facilities include a ASML i-line and GCA g-line wafer steppers, and both optical and electron beam mask writers.

The curriculum begins with introductory courses in microelectronic engineering and nanolithography (nanopatterning) for integrated circuits. The first two years build a solid foundation in mathematics, physics, and chemistry. The fundamentals of statistics and their applications in the design of experiments, semiconductor device physics and operation, and integrated circuit technology are covered in the second year. This prepares students for their first cooperative education experience. The third year comprises the electrical engineering course work necessary for understanding semiconductor devices and integrated circuits. The fourth and fifth years are dedicated to optics, nanolithography systems and materials, semiconductor processing, professional electives, and a two-course capstone senior project. In the capstone course, students propose and conduct individual research/design projects and present their work at the Annual Microelectronic Engineering Conference, which is organized by the department and well-attended by industrial representatives.

A choice of professional electives and the senior project offer students an opportunity to build a concentration, such as advanced CMOS, VLSI chip design, analog circuit design, electronic materials science, microelectromechanical systems (MEMS), or nanotechnology within this unique interdisciplinary major. Two free elective courses allow students to develop an expertise in a related discipline.

Important issues such as technology development, ethics, societal impact, and global perspectives are built into the curriculum beginning with first-year courses. The major is laid out in a way that keeps students connected with their home department throughout the course of study.

Accreditation

The BS in microelectronic engineering major is accredited by the EAC Accreditation Commission of ABET, http://www.abet.org. Visit the college's accreditation page for information on enrollment and graduation data, program educational objectives, and student outcomes.

Industries


  • Electronic and Computer Hardware

  • Manufacturing

  • Automotive

  • Aerospace

Typical Job Titles

Process Engineer Device Engineer
Development Engineer Research Engineer
Equipment Engineer Principle Engineer
Process Integration Engineer Manufacturing Yield Engineer
Photolithography Engineer Field Applications Engineer

100%

outcome rate of graduates

$70k

median first-year salary of graduates

Latest News

Curriculum

Microelectronic Engineering, BS degree, typical course sequence

Course Sem. Cr. Hrs.
First Year
CHMG-131
General Chemistry for Engineers
This rigorous course is primarily for, but not limited to, engineering students. Topics include an introduction to some basic concepts in chemistry, stoichiometry, First Law of Thermodynamics, thermochemistry, electronic theory of composition and structure, and chemical bonding. The lecture is supported by workshop-style problem sessions. Offered in traditional and online format.
3
CMPR-271
Computational Problem Solving for Engineers
This course introduces computational problem solving. Basic problem-solving techniques and algorithm development through the process of top-down stepwise refinement and functional decomposition are introduced throughout the course. Classical numerical problems encountered in science and engineering are used to demonstrate the development of algorithms and their implementations. May not be taken for credit by Computer Science, Software Engineering, or Computer Engineering majors. This course is designed for Electrical Engineering and Micro-Electronic Engineering majors and students interested in the Electrical Engineering minor.
3
EEEE-120
Digital Systems I
This course introduces the student to the basic components and methodologies used in digital systems design. It is usually the student's first exposure to engineering design. The laboratory component consists of small design, implement, and debug projects. The complexity of these projects increases steadily throughout the quarter, starting with circuits of a few gates, until small systems containing several tens of gates and memory elements. Topics include: Boolean algebra, synthesis and analysis of combinational logic circuits, arithmetic circuits, memory elements, synthesis and analysis of sequential logic circuits, finite state machines, and data transfers.
3
MATH-181
Project-Based Calculus I
This is the first in a two-course sequence intended for students majoring in mathematics, science, or engineering. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers functions, limits, continuity, the derivative, rules of differentiation, applications of the derivative, Riemann sums, definite integrals, and indefinite integrals.
4
MATH-182
Project-Based Calculus II
This is the second in a two-course sequence intended for students majoring in mathematics, science, or engineering. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers techniques of integration including integration by parts, partial fractions, improper integrals, applications of integration, representing functions by infinite series, convergence and divergence of series, parametric curves, and polar coordinates.
4
MCEE-101
Introduction to Nanoelectronics
An overview of semiconductor technology history and future trends is presented. The course introduces the fabrication and operation of silicon-based integrated circuit devices including resistors, diodes, transistors and their current-voltage (I-V) characteristics. The course also introduces the fundamentals of micro/nanolithography, with topics such as IC masking, sensitometry, radiometry, resolution, photoresist materials and processing. Laboratory teaches the basics of IC fabrication, photolithography and I-V measurements. A five-week project provides experience in digital circuit design, schematic capture, simulation, bread-boarding, layout design, IC processing and testing.
3
PHYS-211
University Physics I
This is a course in calculus-based physics for science and engineering majors. Topics include kinematics, planar motion, Newton's Laws, gravitation, work and energy, momentum and impulse, conservation laws, systems of particles, rotational motion, static equilibrium, mechanical oscillations and waves, and data presentation/analysis. The course is taught in a workshop format that integrates the material traditionally found in separate lecture and laboratory courses.
4
YOPS-10
RIT 365: RIT Connections
0
 
LAS Perspective 1 (ethical)
3
 
LAS Elective
3
 
First Year Writing (WI)
3
 
Wellness Education*
0
Second Year
EEEE-281
Circuits I
Covers basics of DC circuit analysis starting with the definition of voltage, current, resistance, power and energy. Linearity and superposition, together with Kirchhoff's laws, are applied to analysis of circuits having series, parallel and other combinations of circuit elements. Thevenin, Norton and maximum power transfer theorems are proved and applied. Circuits with ideal op-amps are introduced. Inductance and capacitance are introduced and the transient response of RL, RC and RLC circuits to step inputs is established. Practical aspects of the properties of passive devices and batteries are discussed, as are the characteristics of battery-powered circuitry. The laboratory component incorporates use of both computer and manually controlled instrumentation including power supplies, signal generators and oscilloscopes to reinforce concepts discussed in class as well as circuit design and simulation software.
3
EEEE-282
Circuits II
This course covers the fundamentals of AC circuit analysis starting with the study of sinusoidal steady-state solutions for circuits in the time domain. The complex plane is introduced along with the concepts of complex exponential functions, phasors, impedances and admittances. Nodal, loop and mesh methods of analysis as well as Thevenin and related theorems are applied to the complex plane. The concept of complex power is developed. The analysis of mutual induction as applied to coupled-coils. Linear, ideal and non-ideal transformers are introduced. Complex frequency analysis is introduced to enable discussion of transfer functions, frequency dependent behavior, Bode plots, resonance phenomenon and simple filter circuits. Two-port network theory is developed and applied to circuits and interconnections.
3
MATH-221
Multivariable and Vector Calculus
This course is principally a study of the calculus of functions of two or more variables, but also includes a study of vectors, vector-valued functions and their derivatives. The course covers limits, partial derivatives, multiple integrals, Stokes' Theorem, Green's Theorem, the Divergence Theorem, and applications in physics. Credit cannot be granted for both this course and MATH-219.
4
MATH-231
Differential Equations
This course is an introduction to the study of ordinary differential equations and their applications. Topics include solutions to first order equations and linear second order equations, method of undetermined coefficients, variation of parameters, linear independence and the Wronskian, vibrating systems, and Laplace transforms.
3
MCEE-201
IC Technology
An introduction to the basics of integrated circuit fabrication. The electronic properties of semiconductor materials and basic device structures are discussed, along with fabrication topics including photolithography diffusion and oxidation, ion implantation, and metallization. The laboratory uses a four-level metal gate PMOS process to fabricate an IC chip and provide experience in device design - and layout (CAD), process design, in-process characterization and device testing. Students will understand the basic interaction between process design, device design and device layout.
3
MCEE-205
Statistics and Design of Experiments
Statistics and Design of Experiments will study descriptive statistics, measurement techniques, SPC, Process Capability Analysis, experimental design, analysis of variance, regression and response surface methodology, and design robustness. The application of the normal distribution and the central limit theorem will be applied to confidence intervals and statistical inference as well as control charts used in SPC. Students will utilize statistical software to implement experimental design concepts, analyze case studies and design efficient experiments.
3
PHYS-212
University Physics II
This course is a continuation of PHYS-211, University Physics I. Topics include electrostatics, Gauss' law, electric field and potential, capacitance, resistance, DC circuits, magnetic field, Ampere's law, inductance, and geometrical and physical optics. The course is taught in a lecture/workshop format that integrates the material traditionally found in separate lecture and laboratory courses.
4
PHYS-213
Modern Physics I
This course provides an introductory survey of elementary quantum physics, as well as basic relativistic dynamics. Topics include the photon, wave-particle duality, deBroglie waves, the Bohr model of the atom, the Schrodinger equation and wave mechanics, quantum description of the hydrogen atom, electron spin, and multi-electron atoms.
3
 
LAS Perspective 2 (artistic)
3
 
LAS Perspective 3 (global)
3
Third Year
EEEE-380
Digital Electronics
This is an introductory course in digital MOS circuit analysis and design. The course covers the following topics: (1) MOSFET I-V behavior in aggressively scaled devices; (2) Static and dynamic characteristics of NMOS and CMOS inverters; (3) Combinational and sequential logic networks using CMOS technology; (4) Dynamic CMOS logic networks, including precharge-evaluate, domino and transmission gate circuits; (5) Special topics, including static and dynamic MOS memory, and interconnect RLC behavior.
3
MCEE-320
E&M Fields for Microelectronics
3
MCEE-360
Semiconductor Devices for Microelectronic Engineers
An extensive study of semiconductor physics, principles and device operation tied to realistic device structures and fabrication techniques. Topics include semiconductor fundamentals, pn junction diodes, metal-semiconductor junctions, metal-oxide-semiconductor field-effect transistors (MOSFETs), and bipolar junction transistors (BJT). Throughout the course, finite element simulation of realistic device structures (derived from a technology computer aided design tool) using a Poisson solving software package will be used to reinforce key concepts.
4
MCEE-499
Microelectronic Engineering Co-op (fall and summer)
One semester or summer of paid work experience in microelectronic engineering.
0
MCEE-502
Semiconductor Process Integration
This is an advanced level course in Integrated Circuit Devices and process technology. A detailed study of processing modules in modern semiconductor fabrication sequences will be done through simulation. Device engineering challenges such as shallow-junction formation, fin FETs, ultra-thin gate dielectrics, and replacement metal gates are covered. Particular emphasis will be placed on non-equilibrium effects. Silvaco Athena and Atlas will be used extensively for process simulation.
3
 
Free Elective
3
Fourth Year
EEEE-353
Linear Systems
Linear Systems provides the foundations of continuous and discrete signal and system analysis and modeling. Topics include a description of continuous linear systems via differential equations, a description of discrete systems via difference equations, input-output relationship of continuous and discrete linear systems, the continuous time convolution integral, the discrete time convolution sum, application of convolution principles to system response calculations, exponential and trigonometric forms of Fourier series and their properties, Fourier transforms including energy spectrum and energy spectral density. Sampling of continuous time signals and the sampling theorem, the Laplace, Z and DTFT. The solution of differential equations and circuit analysis problems using Laplace transforms, transfer functions of physical systems, block diagram algebra and transfer function realization is also covered. A comprehensive study of the z transform and its inverse, which includes system transfer function concepts, system frequency response and its interpretation, and the relationship of the z transform to the Fourier and Laplace transform is also covered. Finally, an introduction to the design of digital filters, which includes filter block diagrams for Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters is introduced.
4
EEEE-480
Analog Electronics 
This is an introductory course in analog electronic circuit analysis and design. The course covers the following topics: (1) Diode circuit DC and small-signal behavior, including rectifying as well as Zener-diode-based voltage regulation; (2) MOSFET current-voltage characteristics; (3) DC biasing of MOSFET circuits, including integrated-circuit current sources; (4) Small-signal analysis of single-transistor MOSFET amplifiers and differential amplifiers; (5) Multi-stage MOSFET amplifiers, such as cascade amplifiers, and operational amplifiers; (6) Frequency response of MOSFET-based single- and multi-stage amplifiers; (7) DC and small-signal analysis and design of bipolar junction transistor (BJT) devices and circuits; (8) Feedback and stability in MOSFET and BJT amplifiers.
4
MCEE-499
Microelectronic Engineering Co-op (spring and summer)
One semester or summer of paid work experience in microelectronic engineering.
0
MCEE-503
Thin Films (WI)
This course focuses on the deposition and etching of thin films of conductive and insulating materials for IC fabrication. A thorough overview of vacuum technology is presented to familiarize the student with the challenges of creating and operating in a controlled environment. Physical and Chemical Vapor Deposition (PVD & CVD) are discussed as methods of film deposition. Plasma etching and Chemical Mechanical Planarization (CMP) are studied as methods for selective removal of materials. Applications of these fundamental thin film processes to IC manufacturing are presented.
3
MCEE-505
Lithography Materials and Processes
Microlithography Materials and Processes covers the chemical aspects of microlithography and resist processes. Fundamentals of polymer technology will be addressed and the chemistry of various resist platforms including novolac, styrene, and acrylate systems will be covered. Double patterning materials will also be studied. Topics include the principles of photoresist materials, including polymer synthesis, photochemistry, processing technologies and methods of process optimization. Also advanced lithographic techniques and materials, including multi-layer techniques for BARC, double patterning, TARC, and next generation materials and processes are applied to optical lithography.
3
 
LAS Perspective 4 (social)
3
Fifth Year
MCEE-495
Senior Design I
A capstone design experience for microelectronic engineering senior students. Students propose a project related to microelectronic process, device, component or system design, to meet desired specifications within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability. The students plan a timetable and write a formal proposal. The proposal is evaluated on the basis of intellectual merit, sound technical/research plan, and feasibility. The proposed work is carried through in the sequel course, Senior Design Project II (MCEE-496). Each student is required to make a presentation of the proposal.
3
MCEE-496
Senior Design II
A capstone design experience for microelectronic engineering senior students. In this course, students conduct a hands-on implementation of the projects proposed in the previous course, Senior Design Project I. Technical presentations of the results, including a talk and a poster, are required at the annual conference on microelectronic engineering organized by the program. A written paper in IEEE format is required and is included in the conference journal.
3
MCEE-515
Nanolithography Systems
An advanced course covering the physical aspects of micro- and nano-lithography. Image formation in projection and proximity systems are studied. Makes use of optical concepts as applied to lithographic systems. Fresnel diffraction, Fraunhofer diffraction, and Fourier optics are utilized to understand diffraction-limited imaging processes and optimization. Topics include illumination, lens parameters, image assessment, resolution, phase-shift masking, and resist interactions as well as non-optical systems such as EUV, maskless, e-beam, and nanoimprint. Lithographic systems are designed and optimized through use of modeling and simulation packages.
3
MCEE-550
CMOS Processing
A laboratory course in which students manufacture and test CMOS integrated circuits. Topics include design of individual process operations and their integration into a complete manufacturing sequence. Students are introduced to work in process tracking, ion implantation, oxidation, diffusion, plasma etch, LPCVD, and photolithography. Student learn VLSI design fundamentals of circuit simulation and layout. Analog and Digital CMOS devices are made and tested. This course is organized around multidisciplinary teams that address the management, engineering and operation of the student run CMOS factory.
4
 
Professional Electives
6
 
LAS Immersion 1, 2, 3
9
 
Free Elective
3
Total Semester Credit Hours
129

Please see General Education Curriculum–Liberal Arts and Sciences (LAS) for more information.

(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Accelerated dual degree options

Accelerated dual degree options are for undergraduate students with outstanding academic records. Upon acceptance, well-qualified undergraduate students can begin graduate study before completing their BS degree, shortening the time it takes to earn both degrees. Students should consult an academic adviser for more information.

Microelectronic Engineering, BS degree/Materials Science and Engineering, MS degree, typical course sequence

Course Sem. Cr. Hrs.
First Year
CHMG-131
General Chemistry for Engineers
This rigorous course is primarily for, but not limited to, engineering students. Topics include an introduction to some basic concepts in chemistry, stoichiometry, First Law of Thermodynamics, thermochemistry, electronic theory of composition and structure, and chemical bonding. The lecture is supported by workshop-style problem sessions. Offered in traditional and online format.
3
CMPR-271
Computational Problem Solving for Engineers
This course introduces computational problem solving. Basic problem-solving techniques and algorithm development through the process of top-down stepwise refinement and functional decomposition are introduced throughout the course. Classical numerical problems encountered in science and engineering are used to demonstrate the development of algorithms and their implementations. May not be taken for credit by Computer Science, Software Engineering, or Computer Engineering majors. This course is designed for Electrical Engineering and Micro-Electronic Engineering majors and students interested in the Electrical Engineering minor.
3
EEEE-120
Digital Systems I
This course introduces the student to the basic components and methodologies used in digital systems design. It is usually the student's first exposure to engineering design. The laboratory component consists of small design, implement, and debug projects. The complexity of these projects increases steadily throughout the quarter, starting with circuits of a few gates, until small systems containing several tens of gates and memory elements. Topics include: Boolean algebra, synthesis and analysis of combinational logic circuits, arithmetic circuits, memory elements, synthesis and analysis of sequential logic circuits, finite state machines, and data transfers.
3
MATH-181
Project-Based Calculus I
This is the first in a two-course sequence intended for students majoring in mathematics, science, or engineering. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers functions, limits, continuity, the derivative, rules of differentiation, applications of the derivative, Riemann sums, definite integrals, and indefinite integrals.
4
MATH-182
Project-Based Calculus II
This is the second in a two-course sequence intended for students majoring in mathematics, science, or engineering. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers techniques of integration including integration by parts, partial fractions, improper integrals, applications of integration, representing functions by infinite series, convergence and divergence of series, parametric curves, and polar coordinates.
4
MCEE-101
Introduction to Nanoelectronics
An overview of semiconductor technology history and future trends is presented. The course introduces the fabrication and operation of silicon-based integrated circuit devices including resistors, diodes, transistors and their current-voltage (I-V) characteristics. The course also introduces the fundamentals of micro/nanolithography, with topics such as IC masking, sensitometry, radiometry, resolution, photoresist materials and processing. Laboratory teaches the basics of IC fabrication, photolithography and I-V measurements. A five-week project provides experience in digital circuit design, schematic capture, simulation, bread-boarding, layout design, IC processing and testing.
3
PHYS-211
University Physics I
This is a course in calculus-based physics for science and engineering majors. Topics include kinematics, planar motion, Newton's Laws, gravitation, work and energy, momentum and impulse, conservation laws, systems of particles, rotational motion, static equilibrium, mechanical oscillations and waves, and data presentation/analysis. The course is taught in a workshop format that integrates the material traditionally found in separate lecture and laboratory courses.
4
YOPS-10
RIT 365: RIT Connections
0
 
LAS Perspective 1 (ethical)
3
 
First Year Writing (WI)
3
 
LAS Elective
3
 
Wellness Education*
0
Second Year
EEEE-281
Circuits I
Covers basics of DC circuit analysis starting with the definition of voltage, current, resistance, power and energy. Linearity and superposition, together with Kirchhoff's laws, are applied to analysis of circuits having series, parallel and other combinations of circuit elements. Thevenin, Norton and maximum power transfer theorems are proved and applied. Circuits with ideal op-amps are introduced. Inductance and capacitance are introduced and the transient response of RL, RC and RLC circuits to step inputs is established. Practical aspects of the properties of passive devices and batteries are discussed, as are the characteristics of battery-powered circuitry. The laboratory component incorporates use of both computer and manually controlled instrumentation including power supplies, signal generators and oscilloscopes to reinforce concepts discussed in class as well as circuit design and simulation software.
3
EEEE-282
Circuits II
This course covers the fundamentals of AC circuit analysis starting with the study of sinusoidal steady-state solutions for circuits in the time domain. The complex plane is introduced along with the concepts of complex exponential functions, phasors, impedances and admittances. Nodal, loop and mesh methods of analysis as well as Thevenin and related theorems are applied to the complex plane. The concept of complex power is developed. The analysis of mutual induction as applied to coupled-coils. Linear, ideal and non-ideal transformers are introduced. Complex frequency analysis is introduced to enable discussion of transfer functions, frequency dependent behavior, Bode plots, resonance phenomenon and simple filter circuits. Two-port network theory is developed and applied to circuits and interconnections.
3
MATH-221
Multivariable and Vector Calculus
This course is principally a study of the calculus of functions of two or more variables, but also includes a study of vectors, vector-valued functions and their derivatives. The course covers limits, partial derivatives, multiple integrals, Stokes' Theorem, Green's Theorem, the Divergence Theorem, and applications in physics. Credit cannot be granted for both this course and MATH-219.
4
MATH-231
Differential Equations
This course is an introduction to the study of ordinary differential equations and their applications. Topics include solutions to first order equations and linear second order equations, method of undetermined coefficients, variation of parameters, linear independence and the Wronskian, vibrating systems, and Laplace transforms.
3
MCEE-201
IC Technology
An introduction to the basics of integrated circuit fabrication. The electronic properties of semiconductor materials and basic device structures are discussed, along with fabrication topics including photolithography diffusion and oxidation, ion implantation, and metallization. The laboratory uses a four-level metal gate PMOS process to fabricate an IC chip and provide experience in device design - and layout (CAD), process design, in-process characterization and device testing. Students will understand the basic interaction between process design, device design and device layout.
3
MCEE-205
Statistics and Design of Experiments
Statistics and Design of Experiments will study descriptive statistics, measurement techniques, SPC, Process Capability Analysis, experimental design, analysis of variance, regression and response surface methodology, and design robustness. The application of the normal distribution and the central limit theorem will be applied to confidence intervals and statistical inference as well as control charts used in SPC. Students will utilize statistical software to implement experimental design concepts, analyze case studies and design efficient experiments.
3
PHYS-212
University Physics II
This course is a continuation of PHYS-211, University Physics I. Topics include electrostatics, Gauss' law, electric field and potential, capacitance, resistance, DC circuits, magnetic field, Ampere's law, inductance, and geometrical and physical optics. The course is taught in a lecture/workshop format that integrates the material traditionally found in separate lecture and laboratory courses.
4
PHYS-213
Modern Physics
This course provides an introductory survey of elementary quantum physics, as well as basic relativistic dynamics. Topics include the photon, wave-particle duality, deBroglie waves, the Bohr model of the atom, the Schrodinger equation and wave mechanics, quantum description of the hydrogen atom, electron spin, and multi-electron atoms.
3
 
LAS Perspective 2 (artistic)
3
 
LAS Perspective 3 (global)
3
Third Year
MCEE-320
E&M Fields for Microelectronics
3
MCEE-360
Semiconductor Devices for Microelectronic Engineers
An extensive study of semiconductor physics, principles and device operation tied to realistic device structures and fabrication techniques. Topics include semiconductor fundamentals, pn junction diodes, metal-semiconductor junctions, metal-oxide-semiconductor field-effect transistors (MOSFETs), and bipolar junction transistors (BJT). Throughout the course, finite element simulation of realistic device structures (derived from a technology computer aided design tool) using a Poisson solving software package will be used to reinforce key concepts.
4
EEEE-381
Electronics I
This is the first course in a two-course sequence in analog electronic circuit design. The course covers the following topics: (1) Basic MOSFET current-voltage characteristics; (2) DC and small-signal analysis and design of Metal-oxide-semiconductor (MOS) devices and circuits, including single-stage MOS amplifier configurations; (3) DC biasing circuits, such as basic current sources and current mirrors; (4) Two-transistor amplifier stages, such as differential amplifiers, cascode amplifiers, and output stages; (5) Analysis and design of multistage amplifiers; (6) Frequency response of single and multistage amplifiers; (7) Semiconductor diodes and diode circuits, including rectifying and clamping circuits, as well as Zener diode-based voltage regulation; (8) Ideal operational amplifier (op amp) circuits in non-inverting and inverting configurations.
3
MCEE-499
Microelectronic Engineering Co-op
One semester or summer of paid work experience in microelectronic engineering.
0
MCEE-603
Thin Films
This course focuses on the deposition and etching of thin films of conductive and insulating materials for IC fabrication. A thorough overview of vacuum technology is presented to familiarize the student with the challenges of creating and operating in a controlled environment. Physical and Chemical Vapor Deposition (PVD & CVD) are discussed as methods of film deposition. Plasma etching and Chemical Mechanical Planarization (CMP) are studied as methods for selective removal of materials. Applications of these fundamental thin film processes to IC manufacturing are presented. Graduate paper required.
3
 
Free Elective
3
Fourth Year
EEEE-353
Linear Systems
Linear Systems provides the foundations of continuous and discrete signal and system analysis and modeling. Topics include a description of continuous linear systems via differential equations, a description of discrete systems via difference equations, input-output relationship of continuous and discrete linear systems, the continuous time convolution integral, the discrete time convolution sum, application of convolution principles to system response calculations, exponential and trigonometric forms of Fourier series and their properties, Fourier transforms including energy spectrum and energy spectral density. Sampling of continuous time signals and the sampling theorem, the Laplace, Z and DTFT. The solution of differential equations and circuit analysis problems using Laplace transforms, transfer functions of physical systems, block diagram algebra and transfer function realization is also covered. A comprehensive study of the z transform and its inverse, which includes system transfer function concepts, system frequency response and its interpretation, and the relationship of the z transform to the Fourier and Laplace transform is also covered. Finally, an introduction to the design of digital filters, which includes filter block diagrams for Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters is introduced.
4
EEEE-482
Electronics II
This is the second course in a two-course sequence in analog and digital electronic circuit analysis and design. The analog portion of the course covers the following topics: (1) DC and small signal analysis and design of bipolar junction transistor (BJT) circuits; (2) BJT DC biasing circuits; (3) Simple and compound BJT amplifier stages; (4) Analysis and design of BJT multi-stage amplifiers and op-amps; (5) Frequency response of BJT-based single and multi-stage amplifiers; (6) Feedback and stability in BJT and MOSFET amplifiers. The digital portion of the course covers the essential concepts and applications of digital electronic circuits implemented ins NMOS and CMOS technologies. Topics include the following: (7) static and dynamic behavior of NMOS and CMOS inverters; (8) combinational and sequential CMOS logic networks; (9) dynamic CMOS logic networks, including precharge-evaluate, domino and transmission gate techniques; (10) special topics, including static and dynamic MOS memory and low-power logic.
4
MCEE-502
Semiconductor Process Integration
This is an advanced level course in Integrated Circuit Devices and process technology. A detailed study of processing modules in modern semiconductor fabrication sequences will be done through simulation. Device engineering challenges such as shallow-junction formation, fin FETs, ultra-thin gate dielectrics, and replacement metal gates are covered. Particular emphasis will be placed on non-equilibrium effects. Silvaco Athena and Atlas will be used extensively for process simulation.
3
MCEE-505
Lithography Materials and Processes
Microlithography Materials and Processes covers the chemical aspects of microlithography and resist processes. Fundamentals of polymer technology will be addressed and the chemistry of various resist platforms including novolac, styrene, and acrylate systems will be covered. Double patterning materials will also be studied. Topics include the principles of photoresist materials, including polymer synthesis, photochemistry, processing technologies and methods of process optimization. Also advanced lithographic techniques and materials, including multi-layer techniques for BARC, double patterning, TARC, and next generation materials and processes are applied to optical lithography.
3
MTSE-601
Materials Science
This course provides an understanding of the relationship between structure and properties necessary for the development of new materials. Topics include atomic and crystal structure, crystalline defects, diffusion, theories, strengthening mechanisms, ferrous alloys, cast irons, structure of ceramics and polymeric materials and corrosion principles. Term paper on materials topic.
3
MTSE-704
Theoretical Methods in Materials Science and Engineering
This course includes the treatment of vector analysis, special functions, waves, and fields; Maxwell Boltzmann, Bose-Einstein and Fermi-Dirac distributions, and their applications. Selected topics of interest in electrodynamics, fluid mechanics, and statistical mechanics will also be discussed.
3
MTSE-705
Experimental Techniques
The course will introduce the students to laboratory equipment for hardness testing, impact testing, tensile testing, X-ray diffraction, SEM, and thermal treatment of metallic materials. Experiments illustrating the characterization of high molecular weight organic polymers will be performed.
3
Choose one of the following:
3
  MTSE-790
   Research & Thesis
Dissertation research by the candidate for an appropriate topic as arranged between the candidate and the research advisor.
 
  MTSE-777
   Graduate Project 
This course is a capstone project using research facilities available inside or outside of RIT.
 
 
LAS Perspective 4 (social)
3
 
MTSE Graduate Elective
3
Fifth Year
MCEE-495
Senior Design I
A capstone design experience for microelectronic engineering senior students. Students propose a project related to microelectronic process, device, component or system design, to meet desired specifications within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability. The students plan a timetable and write a formal proposal. The proposal is evaluated on the basis of intellectual merit, sound technical/research plan, and feasibility. The proposed work is carried through in the sequel course, Senior Design Project II (MCEE-496). Each student is required to make a presentation of the proposal.
3
MCEE-496
Senior Design II
A capstone design experience for microelectronic engineering senior students. In this course, students conduct a hands-on implementation of the projects proposed in the previous course, Senior Design Project I. Technical presentations of the results, including a talk and a poster, are required at the annual conference on microelectronic engineering organized by the program. A written paper in IEEE format is required and is included in the conference journal.
3
MCEE-550
CMOS Processing
A laboratory course in which students manufacture and test CMOS integrated circuits. Topics include design of individual process operations and their integration into a complete manufacturing sequence. Students are introduced to work in process tracking, ion implantation, oxidation, diffusion, plasma etch, LPCVD, and photolithography. Student learn VLSI design fundamentals of circuit simulation and layout. Analog and Digital CMOS devices are made and tested. This course is organized around multidisciplinary teams that address the management, engineering and operation of the student run CMOS factory.
4
MCEE-515
Nanolithography Systems
An advanced course covering the physical aspects of micro- and nano-lithography. Image formation in projection and proximity systems are studied. Makes use of optical concepts as applied to lithographic systems. Fresnel diffraction, Fraunhofer diffraction, and Fourier optics are utilized to understand diffraction-limited imaging processes and optimization. Topics include illumination, lens parameters, image assessment, resolution, phase-shift masking, and resist interactions as well as non-optical systems such as EUV, maskless, e-beam, and nanoimprint. Lithographic systems are designed and optimized through use of modeling and simulation packages.
3
Choose one of the following:
6
  MTSE-790
   Research & Thesis
Dissertation research by the candidate for an appropriate topic as arranged between the candidate and the research advisor.
 
 
   Professional Electives
 
 
Professional Electives
6
 
LAS Immersion 1, 2, 3
9
 
Free Elective
3
Total Semester Credit Hours
150

Please see General Education Curriculum–Liberal Arts and Sciences (LAS) for more information.

(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Microelectronic Engineering, BS degree/Science, Technology and Public Policy, MS degree, typical course sequence

Course Sem. Cr. Hrs.
First Year
CHMG-131
General Chemistry for Engineers
This rigorous course is primarily for, but not limited to, engineering students. Topics include an introduction to some basic concepts in chemistry, stoichiometry, First Law of Thermodynamics, thermochemistry, electronic theory of composition and structure, and chemical bonding. The lecture is supported by workshop-style problem sessions. Offered in traditional and online format.
3
CMPR-271
Computational Problem Solving for Engineers
This course introduces computational problem solving. Basic problem-solving techniques and algorithm development through the process of top-down stepwise refinement and functional decomposition are introduced throughout the course. Classical numerical problems encountered in science and engineering are used to demonstrate the development of algorithms and their implementations. May not be taken for credit by Computer Science, Software Engineering, or Computer Engineering majors. This course is designed for Electrical Engineering and Micro-Electronic Engineering majors and students interested in the Electrical Engineering minor.
3
EEEE-120
Digital Systems I
This course introduces the student to the basic components and methodologies used in digital systems design. It is usually the student's first exposure to engineering design. The laboratory component consists of small design, implement, and debug projects. The complexity of these projects increases steadily throughout the quarter, starting with circuits of a few gates, until small systems containing several tens of gates and memory elements. Topics include: Boolean algebra, synthesis and analysis of combinational logic circuits, arithmetic circuits, memory elements, synthesis and analysis of sequential logic circuits, finite state machines, and data transfers.
3
MATH-181
Project-Based Calculus I
This is the first in a two-course sequence intended for students majoring in mathematics, science, or engineering. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers functions, limits, continuity, the derivative, rules of differentiation, applications of the derivative, Riemann sums, definite integrals, and indefinite integrals.
4
MATH-182
Project-Based Calculus II
This is the second in a two-course sequence intended for students majoring in mathematics, science, or engineering. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers techniques of integration including integration by parts, partial fractions, improper integrals, applications of integration, representing functions by infinite series, convergence and divergence of series, parametric curves, and polar coordinates.
4
MCEE-101
Introduction to Nanoelectronics
An overview of semiconductor technology history and future trends is presented. The course introduces the fabrication and operation of silicon-based integrated circuit devices including resistors, diodes, transistors and their current-voltage (I-V) characteristics. The course also introduces the fundamentals of micro/nanolithography, with topics such as IC masking, sensitometry, radiometry, resolution, photoresist materials and processing. Laboratory teaches the basics of IC fabrication, photolithography and I-V measurements. A five-week project provides experience in digital circuit design, schematic capture, simulation, bread-boarding, layout design, IC processing and testing.
3
PHYS-211
University Physics I
This is a course in calculus-based physics for science and engineering majors. Topics include kinematics, planar motion, Newton's Laws, gravitation, work and energy, momentum and impulse, conservation laws, systems of particles, rotational motion, static equilibrium, mechanical oscillations and waves, and data presentation/analysis. The course is taught in a workshop format that integrates the material traditionally found in separate lecture and laboratory courses.
4
YOPS-10
RIT 365: RIT Connections
0
 
First Year Writing (WI)
3
 
LAS Perspective 1 (ethical)
3
 
LAS Elective
3
 
Wellness Education*
0
Second Year
EEEE-281
Circuits I
Covers basics of DC circuit analysis starting with the definition of voltage, current, resistance, power and energy. Linearity and superposition, together with Kirchhoff's laws, are applied to analysis of circuits having series, parallel and other combinations of circuit elements. Thevenin, Norton and maximum power transfer theorems are proved and applied. Circuits with ideal op-amps are introduced. Inductance and capacitance are introduced and the transient response of RL, RC and RLC circuits to step inputs is established. Practical aspects of the properties of passive devices and batteries are discussed, as are the characteristics of battery-powered circuitry. The laboratory component incorporates use of both computer and manually controlled instrumentation including power supplies, signal generators and oscilloscopes to reinforce concepts discussed in class as well as circuit design and simulation software.
3
EEEE-282
Circuits II
This course covers the fundamentals of AC circuit analysis starting with the study of sinusoidal steady-state solutions for circuits in the time domain. The complex plane is introduced along with the concepts of complex exponential functions, phasors, impedances and admittances. Nodal, loop and mesh methods of analysis as well as Thevenin and related theorems are applied to the complex plane. The concept of complex power is developed. The analysis of mutual induction as applied to coupled-coils. Linear, ideal and non-ideal transformers are introduced. Complex frequency analysis is introduced to enable discussion of transfer functions, frequency dependent behavior, Bode plots, resonance phenomenon and simple filter circuits. Two-port network theory is developed and applied to circuits and interconnections.
3
EGEN-099
Engineering Co-op Preparation
This course will prepare students, who are entering their second year of study, for both the job search and employment in the field of engineering. Students will learn strategies for conducting a successful job search, including the preparation of resumes and cover letters; behavioral interviewing techniques and effective use of social media in the application process. Professional and ethical responsibilities during the job search and for co-op and subsequent professional experiences will be discussed.
0
MATH-221
Multivariable and Vector Calculus
This course is principally a study of the calculus of functions of two or more variables, but also includes a study of vectors, vector-valued functions and their derivatives. The course covers limits, partial derivatives, multiple integrals, Stokes' Theorem, Green's Theorem, the Divergence Theorem, and applications in physics. Credit cannot be granted for both this course and MATH-219.
4
MATH-231
Differential Equations
This course is an introduction to the study of ordinary differential equations and their applications. Topics include solutions to first order equations and linear second order equations, method of undetermined coefficients, variation of parameters, linear independence and the Wronskian, vibrating systems, and Laplace transforms.
3
MCEE-201
IC Technology
An introduction to the basics of integrated circuit fabrication. The electronic properties of semiconductor materials and basic device structures are discussed, along with fabrication topics including photolithography diffusion and oxidation, ion implantation, and metallization. The laboratory uses a four-level metal gate PMOS process to fabricate an IC chip and provide experience in device design - and layout (CAD), process design, in-process characterization and device testing. Students will understand the basic interaction between process design, device design and device layout.
3
MCEE-205
Statistics and Design of Experiments
Statistics and Design of Experiments will study descriptive statistics, measurement techniques, SPC, Process Capability Analysis, experimental design, analysis of variance, regression and response surface methodology, and design robustness. The application of the normal distribution and the central limit theorem will be applied to confidence intervals and statistical inference as well as control charts used in SPC. Students will utilize statistical software to implement experimental design concepts, analyze case studies and design efficient experiments.
3
PHYS-212
University Physics II
This course is a continuation of PHYS-211, University Physics I. Topics include electrostatics, Gauss' law, electric field and potential, capacitance, resistance, DC circuits, magnetic field, Ampere's law, inductance, and geometrical and physical optics. The course is taught in a lecture/workshop format that integrates the material traditionally found in separate lecture and laboratory courses.
4
PHYS-213
Modern Physics I
This course provides an introductory survey of elementary quantum physics, as well as basic relativistic dynamics. Topics include the photon, wave-particle duality, deBroglie waves, the Bohr model of the atom, the Schrodinger equation and wave mechanics, quantum description of the hydrogen atom, electron spin, and multi-electron atoms.
3
 
LAS Perspective 2 (artistic)
3
 
LAS Perspective 3 (global)
3
 
Free Elective
3
Third Year
EEEE-381
Electronics I
This is the first course in a two-course sequence in analog electronic circuit design. The course covers the following topics: (1) Basic MOSFET current-voltage characteristics; (2) DC and small-signal analysis and design of Metal-oxide-semiconductor (MOS) devices and circuits, including single-stage MOS amplifier configurations; (3) DC biasing circuits, such as basic current sources and current mirrors; (4) Two-transistor amplifier stages, such as differential amplifiers, cascode amplifiers, and output stages; (5) Analysis and design of multistage amplifiers; (6) Frequency response of single and multistage amplifiers; (7) Semiconductor diodes and diode circuits, including rectifying and clamping circuits, as well as Zener diode-based voltage regulation; (8) Ideal operational amplifier (op amp) circuits in non-inverting and inverting configurations.
3
MCEE-320
E&M Fields for Microelectronics
3
MCEE-360
Semiconductor Devices for Microelectronic Engineers
An extensive study of semiconductor physics, principles and device operation tied to realistic device structures and fabrication techniques. Topics include semiconductor fundamentals, pn junction diodes, metal-semiconductor junctions, metal-oxide-semiconductor field-effect transistors (MOSFETs), and bipolar junction transistors (BJT). Throughout the course, finite element simulation of realistic device structures (derived from a technology computer aided design tool) using a Poisson solving software package will be used to reinforce key concepts.
4
MCEE-499
Microelectronic Engineering Co-op
One semester or summer of paid work experience in microelectronic engineering.
0
MCEE-502
Semiconductor Process Integration
This is an advanced level course in Integrated Circuit Devices and process technology. A detailed study of processing modules in modern semiconductor fabrication sequences will be done through simulation. Device engineering challenges such as shallow-junction formation, fin FETs, ultra-thin gate dielectrics, and replacement metal gates are covered. Particular emphasis will be placed on non-equilibrium effects. Silvaco Athena and Atlas will be used extensively for process simulation.
3
 
LAS Immersion 1
3
Fourth Year
EEEE-353
Linear Systems
Linear Systems provides the foundations of continuous and discrete signal and system analysis and modeling. Topics include a description of continuous linear systems via differential equations, a description of discrete systems via difference equations, input-output relationship of continuous and discrete linear systems, the continuous time convolution integral, the discrete time convolution sum, application of convolution principles to system response calculations, exponential and trigonometric forms of Fourier series and their properties, Fourier transforms including energy spectrum and energy spectral density. Sampling of continuous time signals and the sampling theorem, the Laplace, Z and DTFT. The solution of differential equations and circuit analysis problems using Laplace transforms, transfer functions of physical systems, block diagram algebra and transfer function realization is also covered. A comprehensive study of the z transform and its inverse, which includes system transfer function concepts, system frequency response and its interpretation, and the relationship of the z transform to the Fourier and Laplace transform is also covered. Finally, an introduction to the design of digital filters, which includes filter block diagrams for Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters is introduced.
4
EEEE-480
Analog Electronics
This is an introductory course in analog electronic circuit analysis and design. The course covers the following topics: (1) Diode circuit DC and small-signal behavior, including rectifying as well as Zener-diode-based voltage regulation; (2) MOSFET current-voltage characteristics; (3) DC biasing of MOSFET circuits, including integrated-circuit current sources; (4) Small-signal analysis of single-transistor MOSFET amplifiers and differential amplifiers; (5) Multi-stage MOSFET amplifiers, such as cascade amplifiers, and operational amplifiers; (6) Frequency response of MOSFET-based single- and multi-stage amplifiers; (7) DC and small-signal analysis and design of bipolar junction transistor (BJT) devices and circuits; (8) Feedback and stability in MOSFET and BJT amplifiers.
4
MCEE-503
Thin Films
This course focuses on the deposition and etching of thin films of conductive and insulating materials for IC fabrication. A thorough overview of vacuum technology is presented to familiarize the student with the challenges of creating and operating in a controlled environment. Physical and Chemical Vapor Deposition (PVD & CVD) are discussed as methods of film deposition. Plasma etching and Chemical Mechanical Planarization (CMP) are studied as methods for selective removal of materials. Applications of these fundamental thin film processes to IC manufacturing are presented.
3
MCEE-505
Lithography Materials and Processes
Microlithography Materials and Processes covers the chemical aspects of microlithography and resist processes. Fundamentals of polymer technology will be addressed and the chemistry of various resist platforms including novolac, styrene, and acrylate systems will be covered. Double patterning materials will also be studied. Topics include the principles of photoresist materials, including polymer synthesis, photochemistry, processing technologies and methods of process optimization. Also advanced lithographic techniques and materials, including multi-layer techniques for BARC, double patterning, TARC, and next generation materials and processes are applied to optical lithography.
3
PUBL-701
Graduate Policy Analysis
This course provides graduate students with necessary tools to help them become effective policy analysts. The course places particular emphasis on understanding the policy process, the different approaches to policy analysis, and the application of quantitative and qualitative methods for evaluating public policies. Students will apply these tools to contemporary public policy decision making at the local, state, federal, and international levels.
3
PUBL-702
Graduate Decision Analysis
This course provides students with an introduction to decision science and analysis. The course focuses on several important tools for making good decisions, including decision trees, including forecasting, risk analysis, and multi-attribute decision making. Students will apply these tools to contemporary public policy decision making at the local, state, federal, and international levels.
3
 
Graduate Professional Electives/Policy Electives
6
 
LAS Perspective 4 (social)
3
 
LAS Immersion 2
3
Fifth Year
MCEE-495
Senior Design I
A capstone design experience for microelectronic engineering senior students. Students propose a project related to microelectronic process, device, component or system design, to meet desired specifications within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability. The students plan a timetable and write a formal proposal. The proposal is evaluated on the basis of intellectual merit, sound technical/research plan, and feasibility. The proposed work is carried through in the sequel course, Senior Design Project II (MCEE-496). Each student is required to make a presentation of the proposal.
3
MCEE-496
Senior Design II
A capstone design experience for microelectronic engineering senior students. In this course, students conduct a hands-on implementation of the projects proposed in the previous course, Senior Design Project I. Technical presentations of the results, including a talk and a poster, are required at the annual conference on microelectronic engineering organized by the program. A written paper in IEEE format is required and is included in the conference journal.
3
MCEE-515
Nanolithography Systems
An advanced course covering the physical aspects of micro- and nano-lithography. Image formation in projection and proximity systems are studied. Makes use of optical concepts as applied to lithographic systems. Fresnel diffraction, Fraunhofer diffraction, and Fourier optics are utilized to understand diffraction-limited imaging processes and optimization. Topics include illumination, lens parameters, image assessment, resolution, phase-shift masking, and resist interactions as well as non-optical systems such as EUV, maskless, e-beam, and nanoimprint. Lithographic systems are designed and optimized through use of modeling and simulation packages.
3
MCEE-550
CMOS Processing
A laboratory course in which students manufacture and test CMOS integrated circuits. Topics include design of individual process operations and their integration into a complete manufacturing sequence. Students are introduced to work in process tracking, ion implantation, oxidation, diffusion, plasma etch, LPCVD, and photolithography. Student learn VLSI design fundamentals of circuit simulation and layout. Analog and Digital CMOS devices are made and tested. This course is organized around multidisciplinary teams that address the management, engineering and operation of the student run CMOS factory.
4
PUBL-700
Readings in Public Policy
An in-depth inquiry into key contemporary public policy issues. Students will be exposed to a wide range of important public policy texts, and will learn how to write a literature review in a policy area of their choosing.
3
PUBL-703
Evaluation and Research Design
The focus of this course is on evaluation of program outcomes and research design. Students will explore the questions and methodologies associated with meeting programmatic outcomes, secondary or unanticipated effects, and an analysis of alternative means for achieving program outcomes. Critique of evaluation research methodologies will also be considered.
3
STSO-710
Graduate Science and Technology Policy Seminar
Examines how federal and international policies are developed to influence research and development, innovation, and the transfer of technology in the United States and other selected nations. Students in the course will apply basic policy skills, concepts, and methods to contemporary science and technology policy topics.
3
 
Public Policy Elective
3
 
LAS Immersion 3
3
Choose one of the following:
6
  PUBL-790
   Public Policy Thesis
The master's thesis in science, technology, and public policy requires the student to select a thesis topic, advisor and committee; prepare a written thesis proposal for approval by the faculty; present and defend the thesis before a thesis committee; and submit a bound copy of the thesis to the library and to the program chair.
 
  PUBL-798
   Comprehensive Exam plus 2 Graduate Electives
 
Total Semester Credit Hours
150

Please see General Education Curriculum–Liberal Arts and Sciences (LAS) for more information.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Admission Requirements

Freshman Admission

For all bachelor’s degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

  • 4 years of math required; including pre-calculus or above  
  • Chemistry and physics required

Transfer Admission

Transfer course recommendations without associate degree

Pre-engineering courses such as calculus, calculus-based physics, chemistry, and liberal arts.

Appropriate associate degree programs for transfer

AS degree in engineering science

Learn about admissions and financial aid